

End-use Load Profiles for the U.S. Building Stock

Technical Advisory Group Meeting #8 May 22, 2020

NREL/PR-5500-79105

This work was authored [in part] by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

EULP Data Publication

Andrew Parker September 22, 2020

Same Data, Multiple Scales

Aggregates

Web Viewer

Added Filters

in.saft

in.building_type: Hospital

Filters Filter Options ullServiceRestaurant in.rotation Hospital in.applicable LargeHotel in.aspect ratio LargeOffice in.climate zone MediumOffice in.building_type Outpatient in.code when built PrimarySchool in.weather station in.hvac_system_type in.current_hvac_code in.number_of_stories in water systems fuel Cancel

₩ Ħ CTTT I Real data will be spikier

Individual Buildings

Pre-aggregated Load Profiles

Aggregates

Web Viewer

Individual Buildings

Pre-aggregated EULPs by building type for:

- U.S. States (contiguous)
- ASHRAE Climate Zones
- DOE Building America Climate Zones
- Electric System ISOs
- U.S. Census Public Use Microdata Area*
- U.S. Counties

Format:

• CSV files (for Excel, etc. ease of use)

Additional Data:

- Count of models included per aggregation
- List of model IDs per aggregation
- Model characteristics by ID
- Timeseries mean, stdev, and range

VizStock Web Interface

Individual Buildings – Load Profiles & Models

Aggregates Web Viewer	Individual Buildings
-----------------------	----------------------

Individual Building End Use Load Profiles

- ~450,000 residential
- ~350,000 commercial
- Full dataset will be 10's of terabytes
- Plan to include high-level instructions for loading this dataset using one cloudbased big-data analysis tool

Format:

- Folders with a series of Apache parquet* files
 - Likely 1 file per building, with IDs in names
- In Amazon S3 bucket or similar

Additional Data:

- Model characteristics by ID
- Model in OpenStudio (.osm) format

2 Sets of Weather Data = 2 Sets of EULPs

Typical Meteorological Year (TMY3)

- Widely accepted/expected by utilities, regulators, etc.
- Weather is not coordinated across regions

	Weather Data from Year				
Month	Denver, CO	Boulder, CO			
January	1995	1987			
February	1994	1990			
March	1991	1981			
April 1999		1986			

Actual Meteorological Year (AMY)

• Using 2018 NOAA data

Format:

- CSV timeseries data for each location used
 - Dry bulb temperature
 - Relative humidity
 - Solar direct normal irradiation
 - Solar diffuse horizontal irradiation
 - Wind speed
 - Building characteristics
- Location used for each Model

2 locations 40 miles apart use data from different years for the same month

Time Stamps & Time Zones

Time Zones:

• Data will be provided in UTC

Time Stamps:

- Wrap data from first few hours of year back to the end
- Creates a single, aligned 1 year worth of data

Questions & Discussion

Residential Building Types & End Uses

Residential Building Types	Residential End Uses
Single-Family Detached	Heating
Multifamily (low-rise) Single-Family Attached	Cooling
Multifamily (low-rise) 2–4 Units	Furnace/AC fan
Multifamily (low-rise) 5+ Units	Boiler pumps
	Vent. fans
	Water heating
	Interior Lights
	Exterior Lights
	Misc. plug loads
	Refrigerator
	Clothes washer
	Clothes dryer
	Dishwasher
	Cooking Range

Commercial Building Types & End Uses

Commercial Building Types	Commercial End Uses
Small Office	Heating
Medium Office	Cooling
Large Office	Interior Lighting
Stand-alone Retail	Exterior Lighting
Strip Mall	Interior Equipment
Primary School	Exterior Equipment
Secondary School	Fans
Outpatient Healthcare	Pumps
Hospital	Heat Rejection
Small Hotel	Humidification
Large Hotel	Heat Recovery
Warehouse (non-refrigerated)	Water Systems
Quick Service Restaurant	Refrigeration
Full Service Restaurant	
Mid-rise Apartment	
High-rise Apartment	

Residential Building Characteristics

Residential Model Characteristics	(continued)	(continued)
ahs_region	heating fuel	location latitude
applicable	heating_setpoint	location_longitude
ashrae_iecc_climate_zone_2004	heating setpoint has offset	location region
bathroom_spot_vent_hour	heating setpoint offset magnitude	location state
bedrooms	heating setpoint offset period	mechanical ventilation
building_america_climate_zone	holiday lighting	misc extra refrigerator
ceiling_fan	hot_water_distribution	misc_freezer
census_division	hot water fixtures	misc gas fireplace
census_region	hvac system cooling	misc gas grill
climate_zone_ba	hvac_system_cooling_type	misc gas lighting
climate_zone_iecc	hvac system heat pump	misc hot tub spa
clothes_dryer	hvac_system_heating_electricity	misc_pool
clothes_washer	hvac_system_heating_fuel_oil	misc pool heater
clothes_washer_presence	hvac_system_heating_natural_gas	misc_pool_pump
cooking_range	hvac_system_heating_none	misc_pool_schedule
cooking_range_schedule	hvac system heating other fuel	misc well pump
cooling_setpoint	hvac_system_heating_propane	natural_ventilation
cooling_setpoint_has_offset	hvac_system_is_heat_pump	neighbors
cooling_setpoint_offset_magnitude	hvac system is shared	occupants
cooling_setpoint_offset_period	hvac_system_shared_electricity	orientation
corridor	hvac_system_shared_fuel_oil	overhangs
county	hvac system shared natural gas	plug loads
days_shifted	hvac_system_shared_none	plug_loads_schedule
dehumidifier	hvac_system_shared_other_fuel	puma
dishwasher	hvac system shared propane	pv
door_area	infiltration	radiant_barrier
doors	insulation_crawlspace	range_spot_vent_hour
ducts	insulation finished basement	refrigeration schedule
eaves	insulation_finished_roof	refrigerator
electric_vehicle	insulation interzonal floor	roof material finished roof
geometry_building_number_units_hl	insulation pier beam	roof material unfinished attic
geometry_building_number_units_mf	insulation_slab	sample_weight
geometry_building_number_units_sfa	insulation_unfinished_attic	solar_hot_water
geometry_building_type_acs	insulation_unfinished_basement	state
geometry_building_type_recs	insulation wall	units modeled
geometry_floor_area	interior_shading	units_represented
geometry_floor_area_bin	iso rto region	usage level
geometry_foundation_type	lighting	vintage
geometry_garage	lighting_interior_use	vintage_acs
geometry_perimeter_footprint_ratio	lighting other use	water heater
geometry_stories	location	window areas
geometry wall type	location city	windows

Commercial Building Characteristics

Commercial Model Characteristics	(continued)
building_type	cooling_source_fuel
climate_zone	heating_source_fuel
weather_file_name	hvac_delivery_type
rentable_area	service_water_heating_source_fuel
number_stories	kitchen_makeup
aspect_ratio	exterior lighting zone
total_bldg_floor_area	onsite_parking_fraction
bottom_story_ground_exposed_floor	energy_code_when_built
building_height_relative_to_neighbors	energy_code_when_envelope_last_updated
building_rotation	energy_code_when_exterior_lighting_last_updated
floor_to_floor_height	energy_code_when_hvac_last_updated
party_wall_stories_west	party_wall_fraction
single_floor_area	party_wall_stories_east
story_multiplier	party_wall_stories_north
top_story_exterior_exposed_roof	party_wall_stories_south
window_to_wall_ratio	energy_code_when_interior_equipment_last_updated
hvac_system_type	energy_code_when_interior_lighting_last_updated
energy_code_when_service_water_heating_last_updated	
weekday_operation_start_time	
weekday_operation_duration	
weekend_operation_start_time	
weekend_operation_duration	

Commercial Region 1 Calibration

Andrew Parker Matthew Dahlhausen, Ph.D. September 22, 2020

Calibration Strategy

Model Architecture

Calibration Process for One Region

Calibration Process Over Time

Calibration Process Over Time

Calibration Process Over Time

Region 1 Focus: Major Schedules

Region 1

- Fort Collins, Colorado (pop. ~160k)
- Municipal Utility
- Commercial Stock Summary

Building Type	Count
small_office	369
strip_mall	223
retail	181
warehouse	153
outpatient	96
full_service_restaurant	72
quick_service_restaurant	29
medium_office	28
primary_school	21
large_hotel	8
small_hotel	7
large_office	4

Primarily used AMI data from 2016

ComStock Sensitivity Analysis

Analyzed impact on ~15 QOIs ... focused on inputs highly rated for many QOIs

List of updates

New capabilities

• None

Baseload updates

- Interior lighting schedules
- Plug load schedules

HVAC updates

Thermostat setpoints

ComStock Calibration Before EULP

ComStock & CBECS Energy Estimate Comparisons by Census Division

CBECS Target

ComStock (CS) Results

Challenges of Commercial AMI data

Sanity Checking AMI Data vs CBECS

	CBECS Mountain Region	Fort Collins AMI
building_type	(kWh/sf)	(kWh/sf)
full_service_restaurant	34*	<mark>67</mark>
hospital	27	NA
large_hotel	22	12
large_office	14*	16
medium_office	14*	14
outpatient	12	14
primary_school	10	8
quick_service_restaurant	34*	123
retail	24	40
secondary_school	10	NA
small_hotel	22	9
small_office	14*	31
strip_mall	20	25
warehouse	4	22

Mean EUI of AMI data is much higher/lower than CBECS for some building types... why?

* CBECS doesn't break out quick vs. full svc. Restaurant or office size category

Distribution of AMI Data

	Annual EUI (kWh/sqft)	Percentiles				
	mean	P05	P25	P50	P75	P95
full_service_restaurant	76.8	11.7	26.4	48.1	135.8	215.5
large_hotel	20.2	9.0	15.1	18.1	25.9	31.0
large_office	18.3	7.2	17.4	17.4	24.5	24.5
medium_office	17.0	4.8	12.1	17.9	22.2	36.7
midrise_apartment	29.3	3.4	4.8	6.4	10.7	257.2
outpatient	15.1	3.3	7.8	10.2	17.6	35.5
primary_school	9.1	1.8	6.2	8.0	12.9	16.3
quick_service_restaurant	174.4	48.1	88.5	160.4	215.5	347.7
retail	40.8	2.6	9.0	20.2	49.4	197.7
small_hotel	9.8	1.3	1.3	14.2	14.2	16.4
small_office	30.0	3.8	7.0	10.6	23.1	124.3
strip_mall	28.0	5.0	11.5	18.0	30.3	77.3
warehouse	62.2	1.3	3.8	7.1	13.5	72.3

Mean EUI almost as high as 95th percentile!

Outliers Skewing Mean AMI Data

Impact of Outliers & Classification: Version 1

Investigating V1 Outliers with Google Maps

- strip_mall (23 outliers)
 - 9 are convenience store/gas stations
 - 11 are restaurants (or primarily restaurants)
- warehouse (18 outliers)
 - 13 are manufacturing
 - 2 are autobody shops
- small_office (13 outliers)
 - 2 are manufacturing
 - 1 is a nursery/greenhouse
 - 1 is a multifamily condo w/ maybe office space on first floor?
 - The rest are just normal-looking offices
- retail (5 outliers)
 - 3 are nursery/greenhouses
- outpatient (4 outliers)
 - All appear to legitimately be outpatient... perhaps some specialties use much more energy?
- quick_service_restaurant (1 outlier)
 - Drive-through where service is not tied to floor area

Conclusion: Most "outliers" were actually misclassified buildings, not truly "outliers" of the target building type

Identifying Misclassified AMI Systematically

Refine the misclassification/outlier detection process.

Goals:

- Keep as much AMI as possible
- Can't rely on manually classifying every AMI building

Approach:

- 1. Run each method on AMI
- 2. Find method that identifies largest number of buildings
- 3. Manually classify all these outliers using google maps
- 4. Compare the results of the various methods

Identifying Misclassified AMI - Results

Methods tested:

- 1. +/- 1.5x IQR: original approach, only removes super high EUIs
- 2. +/- 1.5x natural log(IQR): incorrectly removes low but realistic EUIs
- 3. 25th-75th percentile: too conservative, removes half of buildings every time
- 4. +/- 10x median: misses low EUIs
- 5. +/- 5x median: slightly better
- 6. +/- 3x median: best balance we've found

		AMI removed by filter type					
Building type	Total AMI count	+/- 1.5x IQR	+/- 1.5x ln(IQR)	25th-75th percentile	10x median	5x median	3x median
small_office	369	28	18	184	11	26	58
strip_mall	223	24	10	110	14	37	65
retail	181	16	6	90	10	23	57
warehouse	153	18	18	76	16	25	45
outpatient	96	4	14	48	9	12	16
full_service_restaurant	72	3	2	36	1	4	10
quick_service_restaurant	29	2	1	14	0	0	1
medium_office	28	1	2	14	2	2	5
primary_school	21	0	2	10	0	0	2
large_hotel	8	0	0	4	0	0	0
small_hotel	7	0	0	2	0	1	2
large_office	4	0	0	2	0	0	0

NREL

20

Final Method Selection: +/- 3x Median

Still uses most of the AMI

Building type	Total AMI Count	True Positive	False Positive	False Positive Rate	Valid AMI Preserved (%)
full_service_restaurant	72	5	5	50%	93%
large_hotel	8	0	0		<mark>100%</mark>
large_office	4	0	0		<mark>100%</mark>
medium_office	28	3	2	40%	<mark>92%</mark>
outpatient	96	9	7	44%	92%
primary_school	21	2	0	0%	<mark>100%</mark>
quick_service_restaurant	29	0	1	100%	97%
retail	181	46	11	19%	<mark>92%</mark>
small_hotel	7	1	1	50%	83%
small_office	369	45	13	22%	96%
strip_mall	223	58	7	11%	96%
warehouse	153	38	7	16%	<mark>94%</mark>
Grand Total	1191	207	54	21%	<mark>95%</mark>

True Positive: correctly identified a misclassified building

False Positive: identified a building as misclassified, but the original classification was correct

Misclassified AMI: +/- 3x Median

- A. Retail or strip malls that are mostly or entirely restaurants
- B. Empty or abandoned buildings (don't use much energy)
- C. Residential homes that are converted into dentist/doctor/counseling/etc. offices
- D. More restaurants
- E. Strip malls or retail that are convenience stores, which have refrigeration
- F. Warehouses that are light manufacturing of some sort

AMI Classification

- CoStar (our classification starting point) classifies based on real-estate needs
 - Some are clear: offices, outpatient, standalone retail
 - Some are ambiguous: strip malls, warehouses
- For region 1, addresses were available per-building
 - Were able to investigate specific outliers
 - Must use this opportunity to refine classification & outlier detection

Was important for Region 1 Will be a major focus for Region 2
Matching AMI Data to Buildings

- Some datasets have one service address per-AMI meter
- Ft. Collins...not so simple

- Many are 1 AMI meter, 1 parcel, 1 account, 1 building
- Some are not
- Getting area right is critical for EUI calculation

Processing Commercial end use data

Commercial End Use Data

- Res end use data typically collected with energy research in mind
- Com end use data typically collected for another reason & purchased for EULP
 - Data format varies a few days to reformat/clean up each dataset
 - Labeling/data not always certain
 - A meter is labeled "lighting," but does that circuit have any other loads on it?
 - How much of the building area is served by a given circuit?

Takes time & effort to use each dataset

Baseload Updates

Update: Lighting Schedules

Task	Affected Building Type	Considerations
Update normalized lighting schedules	retail, full service restaurant, warehouse, office	 Calculated average daily (in hourly interval) profiles for each building type and for each day of week. Initial understanding of variability of profiles was also explored.
	primary school and secondary school	 Calculated average daily (in hourly interval) profiles for each building type and for each day of week. Differentiated average profiles between academic and summer break periods.
Update lighting power density	retail, full service restaurant, warehouse, office	 Normalized profile can underestimate usage since it is based on measured peak power. Quantified approximate difference between design peak power and measured peak power (≈5%). Lighting power density adjusted.

Details of using procured end use data

Nor

Impact: Lighting Schedules

Update: Plug Load Schedules

Task	Affected Building Type	Considerations
Update normalized plug load schedules	retail, full service restaurant, grocery, warehouse, office	 Calculated average daily (in hourly interval) profiles for each building type and for each day of week.
	primary school, secondary school	 Calculated average daily (in hourly interval) profiles for each building type and for each day of week. Differentiated average profiles between academic and summer break periods.
Update equipment power density	retail, full service restaurant, grocery, warehouse, office, primary school, secondary school	 Normalized profile can underestimate usage since it is based on measured peak power. Equipment power density adjusted.

Details of using procured end use data

Building Type	Building Count
FoodService_Restaurant	697
Mercantile_Retail	59
Warehouse	31
FoodSales_Grocery	30
Education_School	28
Office	27
Lodging_Hotel	1
Office_Medical	1
Service	0
DataCenter	0
Other	0

Building types with greater than 20 sample buildings were included

3

Calculated median building plug load schedule for each day of the week and each building type.

4

2

Manually identified meter data that is not relevant to plug loads. About 90 keywords identified as irrelevant. Examples:

- "Lighting"
- "Air Conditioner"
- "Unknown"

Visually compared load profiles between the days of the week to determine whether days could be combined. For example, warehouses have similar weekday profiles, but weekends should have a unique schedule.

Impact: Plug Load Schedules

HVAC Updates

Update: Thermostat Setpoints

Task	Affected Building Type	Methods
Update normalized thermostat heating and cooling setpoint schedules	retail, strip mall, quick- service restaurant, full- service restaurant, grocery, office	 Calculated average daily (in hourly interval) profiles for each building type and each day of the week. Initial understanding of variability of profiles was also explored for future calibration efforts.

Details of using procured end use data

Identified heating and cooling thermostat setpoint meters in datasets.

Building Type	Building Count With Thermostat Data
FoodService_Restaurant	1817
Mercantile_Retail	1692
FoodSales_Grocery	164
Office	31
Education_School	16
Warehouse	4
Lodging_Hotel	4
Hospital	2
Outpatient	2

Calculated average heating and cooling profiles for each building for each day of the week.

Profiles were aggregated to produce representative heating and cooling setpoint profiles

3

were included

Monday profiles

Impact: Thermostat Setpoints

Commercial stock end-use summary

Total building stock load by day type

Small office by day type

40

Strip mall by day type

Hour of day (0-23)

Hour of day (0-23)

Retail by day type

Warehouse by day type

Warehouse by day type

Tracking Quantities of Interest

Region 1 Focus: Annual Error

Region 1 Focus: Total Error Metrics

Areas for Improvement

Impact of Outliers

Next Steps: AMI Classification & Outliers

Investigate approach using a much bigger dataset

- Have dataset of ~500k monthly meters from Xcel Energy
- ~200k have CoStar matches (for metadata)
- 1. Take a random sample and manually classify
- 2. Calculate rate of true/false positives & true/false negatives
- 3. Look for systematic misclassifications or reasons for outliers
- 4. Improve outlier/misclassification detection (if possible)

Next Steps: Model Improvements

- Update energy code adoption by state/year
- Implement RTU efficiency & performance changes
 - RTU data analyzed by excellent intern this summer!

Ensure point of comparison is correct first

- Need to ensure correct classification, perhaps change schedules space use types for things like warehouses, which act more like offices. None of the model updates considered warehouses.
- Consider exterior lighting.
- Add schedule, enduse lighting/equipment variability.
- Restaurant kitchen equipment, particularly hot water use.

Conclusions

- Ran 6 iterations of ComStock incorporating 3 discrete changes
- Total and individual building type load shapes mostly look good, ignoring magnitude
- Determined that AMI classification & screening needs improvement
 - Will impact AMI comparisons moving forward
 - Have a plan to improve this
- Will be moving on to Region 2, but continue tracking Region 1 metrics

Residential Region 2 Calibration

Anthony D. Fontanini, Ph.D. Eric Wilson September 22, 2020

Calibration Strategy

Model Architecture

Region 2 Focus: Nationally-Relevant Updates

Calibration Process for One Region

Calibration Process Over Time

Calibration Process Over Time

Calibration Process Over Time

Region 2 Calibration Strategy

Residential Calibration Dimensions

Advanced metering infrastructure (AMI) data from ComEd service territory

Region 2 – Fort Collins, CO

- Fort Collins, Colorado (pop. ~160k)
- Municipal Utility
- Primarily used AMI data from 2018

Residential Building Stock	
Summary	Percent
Building Type Distribution	
Single-Family Detached	66.0%
Multi-Family 5+ Units	19.7%
Single-Family Attached	7.7%
Multi-Family 2-4 Units	6.6%
Heating Fuel Distribution	
Natural Gas	69.7%
Electricity	23.5%
Propane	4.0%
Other	2.6%

List of updates

New validation comparisons

- Updated EIA form 861 annual residential sales scatterplot to 2018
- Updated EIA natural gas data comparison to 2018
- Updated EIA natural gas data to standard temperature and pressure (STP) by TAG suggestion
- RECS 2009 and RECS 2015 annual end-use scatterplots by fuel type, building type, and climate <u>New capabilities</u>
- Restructured HVAC housing characteristics to allow for regional and more granular datasets
- Introduced vacant units

Baseload updates

- Appliance schedules informed by stochastic occupancy model
- Annual miscellaneous electric loads (MELs) broken out by building type

HVAC updates

- Setpoints now described by IECC climate zones and RECS building type
- Heating fuel type described by Public Use Microdata Area (PUMA)
- More diversity added to cooling and heating setback schedules
- Investigated effect of number of days for natural ventilation
- Investigated impact of new HVAC housing characteristics structure

New validation comparisons

RECS end-use scatterplots

2015 other e

Ceiling fan_e Clothes dryer e

Cooling e

Clothes washer_e Cooking_e

- Scatterplots for annual fuel consumption
- Dimensions:
 - RECS 2009 and RECS 2015
 - Building America climate zone
 - Building Type
 - Fuel (electricity, natural gas, propane, fuel oil)

2018 EIA data comparisons (updated from 2012)

Scaling Factors Update

Update: EIA service territory and customer mapping

- Data sources
 - Service territory shape files (2012)
 - NSRDB grid cells
 - Census tracts
 - Dwelling unit counts

After Region 2 calibration

- Data sources
 - EIA Form 861
 - Customer counts
 - Service territory (counties)
 - American Community Survey (ACS)
 - Dwelling unit counts by

Impact: EIA service territory and customer mapping

Before mapping update

Added Capabilities

Update: Introduce Vacant Units

- American Community Survey (ACS) Public Use Microdata Sample (PUMS) 2016
 - Vacant dwelling units by building type at PUMA-region resolution (N=~2,400)
 - ~14,000,000 vacant units in U.S.
 - Higher fraction of vacant multi-family units in city centers
 - Modeled reduced baseloads, but buildings still heated and cooled

Update: Introduce Vacant Units

Impact: Introduce Vacant Units

Cohort: Single-Family Detached, Fort Collins

Impact: Introduce Vacant Units

With Vacant Units

Without Vacant Units

Update: Improve HVAC housing characteristics

- HVAC distributions derived from RECS:
 - Heating and cooling equipment type
 - Equipment efficiency levels (based on age of equipment from RECS and efficiency vs. age distributions derived from AHRI data and other sources)
- Automated update process and improved structure of dependencies,
 - Simplified from 37,071 rows in 17 tables to 2,416 rows in 7 tables
 - Will make future updates easier
 - Makes outputs more transparent and easier to understand
 - Simplifies handling of heat pumps and HVAC systems serving multiple units
 - Separates assignment of equipment type (furnace, boiler, heat pump, etc.) from efficiency level
 - Enables us to use American Housing Survey (N=114,860) instead of RECS (N=12,083) for HVAC equipment type, improving geographic resolution
 - Efficiency distributions still depend on equipment type

Update: Improve HVAC housing characteristics

Improved distribution of **Room AC efficiency** using historical ENERGY STAR saturation data, ENERGY STAR minimum efficiency values over time, and federal minimum efficiency values over time.

Year	Product	Metric	Value Va	lue N	linimum	STAR	
1970	Room AC	EER/CEER	5.8				
1996	Room AC	EER/CEER	9.08				
1997	Room AC	EER/CEER	9.09				
1998	Room AC	EER/CEER	9.08				
1999	Room AC	EER/CEER	9.07				
2000	Room AC	EER/CEER	9.3				
2000	Room AC	EER/CEER	9.3				
2001	Room AC	EER/CEER	9.63	9.79	10.88	3	
2002	Room AC	EER/CEER	9.75	9.79	10.88	3	
2003	Room AC	EER/CEER	9.75	9.79	10.88	3	
2004	Room AC	EER/CEER	9.71	9.79	10.88	3	
2005	Room AC	EER/CEER	9.95	9.79	10.88	3	
2006	Room AC	EER/CEER	10.02	9.79	10.88	3	
2007	Room AC	EER/CEER	9.81	9.79	10.88	3	
2008	Room AC	EER/CEER	9.93	9.79	10.88	3	
2009	Room AC	EER/CEER	9.93	9.79	10.88	3	
2010	Room AC	EER/CEER		9.79	10.88	3	33%
2011	Room AC	EER/CEER		9.79	10.88	3	62%
2012	Room AC	EER/CEER		9.79	10.88	3	58%
2013	Room AC	EER/CEER		9.79	10.88	3	72%
2014	Room AC	EER/CEER		11	11	L	50%
2015	Room AC	EER/CEER		11	11	L	54%
2016	Room AC	EER/CEER		11	12	2	38%
2017	Room AC	EER/CEER		11	12	2	34%
2018	Room AC	EER/CEER		11	12	2	42%

Shipment

Weighted

Federal

Minimum

ENERGY

STAR

Percent

ENERGY

Table sources/notes:

- Shipment weighted values for Room AC comes from AHRI data from Home Energy Score documentation (1970–2008; 2009 is a copy of 2008 values)
- Federal minimum values from a descriptive paragraph at https://appliance-standards.org
- ENERGY STAR, 2014-2015 values are a simplification based on a document at energystar.gov
- ENERGY STAR, 2016-2020 values are a simplification based on a document at energystar.gov
- ENERGY STAR EER value simplification based on data from data.energystar.gov (majority of typical units are EER=12.0)
- Percent ENERGY STAR comes from data found on energystar.gov (no data for 2009 and prior; 2019 and 2020 copied from 2018)

Update: Improve HVAC housing characteristics

• Updated reference year for HVAC and refrigerator ages (and thus efficiencies) from 2009 to 2018.

For example:

• In 2009, a 15-year-old furnace was made in 1994:

Distribution of furnace efficiencies in 2003

• In 2018, a 15-year-old furnace was made in 2003: 100%

Impact: Improve HVAC housing characteristics

Impact: Improve HVAC housing characteristics

Baseload Updates

Update: Integrated stochastic occupancy model

ightarrow Stochastic occupant-driven load model is now used for every ResStock run

Example of changes for one home:

Impact: Integrated stochastic occupancy model

Cohort: Total Residential Stock Fort Collins

---- AMI 2018 -5%

Update: MELs equations by building type

Previous approach

• Single regression equation for all building types (RECS 2015)

 $MELS = 908.91 + 277.75n_{occupants} + 0.39 ffa$

New approach

Separate regression equation for each building type (RECS 2015)

$$\begin{split} MELS_{SFD} &= 1146.95 + 296.94 \, n_{occupants} + 0.30 ffa \\ MELS_{SFA} &= 1395.84 + 136.53 n_{occupants} + 0.16 ffa \\ MELS_{MF} &= 875.22 + 184.11 n_{occupants} + 0.38 ffa \end{split}$$

n_{occupants}: Number of occupants
ffa: Finished floor area
SFD: Single-Family Detached
SFA: Single-Family Attached
MF: Multi-Family

** MELS are defined by the following fields in RECS 2015: televisions, microwaves, humidifiers, and other devices not elsewhere classified

Impact: MELs equations by building type

Previous approach

• Single regression equation for all building types

 $MELS = 908.91 + 277.75n_{occupants} + 0.39 ffa$

New approach

• Separate regression equation for each building type

$$\begin{split} MELS_{SFD} &= 1146.95 + 296.94 \, n_{occupants} + 0.30 ffa \\ MELS_{SFA} &= 1395.84 + 136.53 n_{occupants} + 0.16 ffa \\ MELS_{MF} &= 875.22 + 184.11 n_{occupants} + 0.38 ffa \end{split}$$

n_{occupants}: Number of occupants ffa: Finished floor area SFD: Single-Family Detached SFA: Single-Family Attached MF: Multi-Family

RECS 2015 percent differences

Building Type	Error: 1 equation	Error: 3 equations
MF	21.4%	6.1%
SFA	13.5%	2.0%
SFD	-12.4%	-9.2%

HVAC Updates

Update: Heating Fuel described by PUMA

Impact: Heating Fuel described by PUMA

Cohort: Total Residential Stock

Update: Setpoint & setback distributions and setback time period diversity

- Before Calibration Region 2
 - Setpoints by AIA Climate Zone

- After Calibration Region 2
 - Setpoints by IECC 2004 climate and moisture zone
 - Increased diversity of setback schedules (±5 hours)

Update: Setpoint & setback distributions and setback time period diversity

- After Calibration Region 2
 - Setpoints by IECC 2004 climate and moisture zone
 - Increased diversity of setback schedules (±5 hours)

Average Heating Setpoint

Update: Setpoint & setback distributions and setback time period diversity

On average:

- Dry climates use higher setpoint at night
- Moist climates use cooler setpoint at night

Average difference between nighttime and home AC setpoints, by IECC Climate Zone (source: RECS 2009)

Impact: Setpoint distributions and diversity

Impact: Setpoint distributions and diversity

Residential stock end-use summary

Fort Collins municipal utility, CO

Seasonal end-use loads by day type

Fort Collins municipal utility, CO

---- AMI 2018 -5%
Fort Collins municipal utility, CO

NREL | 44

Fort Collins municipal utility, CO

NREL | 45

Residential stock end-use summary

ComEd service territory, IL

Tracking Quantities of Interest

Fort Collins, CO: Annual Error

ComEd, IL: Annual Error

<u>Reasons</u>

- The increase initially at the start of region 2 is due to the stochastic occupant model
- Heating fuel helped correction
- Vacant units helped correction
- HVAC Restructure helped correction

Areas for Improvement

Two regions provides additional insight into areas for improvement

Two regions provides additional insight into areas for improvement

57

Two regions provides additional insight into areas for improvement

Two regions provides additional insight into areas for improvement

HVAC structure improvement enables use of more granular HVAC data:

- Transition from RECS to American Housing Survey (AHS)
 - Cooling saturation and type (central vs. window AC)
 - Heating system type (furnace vs. boiler; electric baseboard vs. heat pump)
 - Water heating fuel type
- AHS is broken into census divisions and the largest 15 metro areas
 - Help towards improving urban and rural models
 - AHS has more samples than RECS, which enables more accurate slicing by vintage, region, and building type

Conclusions (1)

- Ran 14 iterations of ResStock incorporating 8 discrete changes
 - Saw general improvements in QOI metrics
 - Most of the improvements made will carry over to the entire U.S.
- Structural changes to HVAC housing characteristics
 - Enables use for more granular data
 - Will benefit all regions moving forward
- Integrated the residential stochastic occupant-driven load model
 - Now used for every run
- New/Updated visualizations
 - Updated EIA data comparisons from 2012 to 2018
 - RECS 2009 and 2015 end-use scatterplots

Conclusions (2)

- Summary of changes
 - Reduced baseload by adding dwelling unit vacancy
 - More accurate scaling factors for mapping to utility service territories
 - Heating fuel distributions refined with sub-state resolution
 - Improved climate dependence of cooling & heating setpoints and setbacks
 - Improved diversity of cooling and heating setback period start and end times
 - Separated MELs regression equations by building type
- Priority areas for improvement for next region
 - Regionally variable schedule and power level baseloads
 - Potentially missing thermal mass or nighttime baseloads in ComEd service territory
 - Geographically granular HVAC system saturations and water heating fuel type saturations
- Will be moving on to Regional Dataset 3 (Seattle, WA), but continue tracking metrics for the first two region datasets